Biclustering methods for one-mode asymmetric matrices.

نویسندگان

  • Michael J Brusco
  • Patrick Doreian
  • Douglas Steinley
چکیده

An asymmetric one-mode data matrix has rows and columns that correspond to the same set of objects. However, the roles of the objects frequently differ for the rows and the columns. For example, in a visual alphabetic confusion matrix from an experimental psychology study, both the rows and columns pertain to letters of the alphabet. Yet the rows correspond to the presented stimulus letter, whereas the columns refer to the letter provided as the response. Other examples abound in psychology, including applications related to interpersonal interactions (friendship, trust, information sharing) in social and developmental psychology, brand switching in consumer psychology, journal citation analysis in any discipline (including quantitative psychology), and free association tasks in any subarea of psychology. When seeking to establish a partition of the objects in such applications, it is overly restrictive to require the partitions of the row and column objects to be identical, or even the numbers of clusters for the row and column objects to be the same. This suggests the need for a biclustering approach that simultaneously establishes separate partitions of the row and column objects. We present and compare several approaches for the biclustering of one-mode matrices using data sets from the empirical literature. A suite of MATLAB m-files for implementing the procedures is provided as a Web supplement with this article.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approximation Ratio for Biclustering

The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying one-way clustering algorithms independently on the rows and on the columns of the input matrix. We show that such a solution ...

متن کامل

Gene co-expression networks via biclustering Differential gene co-expression networks via Bayesian biclustering models

Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...

متن کامل

Asymmetric biclustering with constrained von Mises-Fisher models

As a probability distribution on the high-dimensional sphere, the von Mises-Fisher (vMF) distribution is widely used for directional statistics and data analysis methods based on correlation. We consider a constrained vMF distribution for block modeling, which provides a probabilistic model of an asymmetric biclustering method that uses correlation as the similarity measure of data features. We...

متن کامل

Optimal Estimation and Completion of Matrices with Biclustering Structures

Biclustering structures in data matrices were first formalized in a seminal paper by John Hartigan [15] where one seeks to cluster cases and variables simultaneously. Such structures are also prevalent in block modeling of networks. In this paper, we develop a theory for the estimation and completion of matrices with biclustering structures, where the data is a partially observed and noise cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Behavior research methods

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2016